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Abstract. In this paper we use a combination of analytical and numerical techniques to analyse the effect of a uniform
vertical magnetic field on the onset of steady Bnard-Marangoni convection in a horizontal layer of quiescent,
electrically conducting fluid subject to a uniform vertical temperature gradient. The critical values of the Rayleigh
and Marangoni numbers for the onset of steady convection are calculated and the latter is found to be critically
dependent on the non-dimensional Crispation and Bond numbers. The stability of the layer to long wavelength
disturbances is analysed and the two different asymptotic limits of strong surface tension (small Crispation number)
and strong magnetic field (large Chandrasekhar number) are investigated. In the latter case analytical results for the
critical Rayleigh and Marangoni numbers are obtained and are found to be in excellent agreement with the results of
numerical calculations. We conclude that the presence of the magnetic field always has a stabilising effect on the layer.
Treating the Marangoni number as the critical parameter we show that if the free surface is non-deformable then any
particular disturbance can be stabilised with a sufficiently strong magnetic field, but if the free surface is deformable
and gravity waves are excluded then the layer is always unstable to infinitely long wavelength disturbances with
or without a magnetic field. Including gravity has a stabilising effect on the long wavelength modes, but not all
disturbances can be stabilised no matter now strong the magnetic field is.

1. Introduction

The aim of this paper is to investigate the effect of a uniform vertical magnetic field on
the Bdnard-Marangoni instability of a horizontal three dimensional planar layer of quiescent
electrically conducting fluid, subject to a uniform vertical temperature gradient.

The classical buoyancy-driven instability of a horizontal fluid layer heated from below has
received considerable attention since the pioneering work of Rayleigh [1], who showed that
steady convection (often called Bdnard convection) occurs only when the Rayleigh number,
R, defined as

R = ga(T1 - T2)d 3

VK

exceeds a critical value, where g is the acceleration due to gravity, a is the coefficient
of volume expansion, T is the constant temperature of the lower solid boundary, T2 is
the constant temperature of the upper free surface, d is the thickness of the layer, v is
the kinematic viscosity and K the thermal diffusivity of the fluid. Rayleigh's [1] work was
restricted to the limit of large surface tension and later Pellew & Southwell [2] proved that in
this case instability must always set in as steady, rather than overstable, convection. Recently
Benguria & Depassier [3] have found overstable convection when the free surface is allowed
to deform.

In his pioneering contribution Pearson [4] showed that, even in the absence of buoyancy
forces, a thermocapillary force at the free surface caused by the dependence of the surface
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tension on temperature causes steady convection (usually called Marangoni convection) to
occur in a fluid layer heated from below provided that the Marangoni number, M, defined
as

M - y(T - T2 )d
PVK

exceeds a critical value, where the constant -y is the rate of change of surface tension
with respect to temperature and p is the density of the fluid. Pearson's [4] work was also
restricted to the limit of large surface tension, but subsequently Scriven & Sterling [5], Smith
[6] and Takashima [7] showed that similar behaviour occurs when the free surface is allowed
to deform. Takashima [8, 9] showed numerically that overstable Marangoni convection can
also occur, but only if the layer is heated from above (M < 0) and the free surface is allowed
to deform.

The combined problem including both buoyancy and thermocapillary effects was treated
by Nield [10] in the limit of large surface tension who found that for steady convection the two
destabilising mechanisms are tightly coupled and reinforce one another. Davis & Homsy [11]
studied the effect of free surface deformation on the combined problem and concluded that
surface deflection stabilizes buoyancy dominated convection and destabilizes surface tension
dominated convection. Oscillatory instabilities for the combined problem have recently been
found by Benguria & Depassier [12] and Gouesbert et al. [13], but again only if the free
surface is allowed to deform.

The effect of a uniform vertical magnetic field on pure buoyancy-driven convection was
described by Chandrasekhar [14] who demonstrated that the effect of including the field is to
increase the critical value of R for the onset of both steady and overstable convection, and
hence to have a stabilising effect on the layer. Nield [15] analysed the effect of a magnetic
field on the combined problem for steady convection in the limit of large surface tension and
showed that, although the tight coupling between two destabilising mechanisms was weak-
ened, the effect of increasing the strength of the field from zero was to monotonically increase
the critical values of R and M and hence to stabilise the layer. More recently this limit was
also investigated by Maekawa & Tanasawa [16, 17]. In a series of papers Sarma investigated
the effect of a magnetic field on the onset of steady convection when the free surface is
allowed to deform in both the purely surface tension-driven [18, 19] and combined [20, 21,
22, 23] problems for a variety of thermal and magnetic boundary conditions. Unfortunately
he used an incorrect normal stress boundary condition in his analysis and so his results in
the case of a non-zero magnetic field and a deformable free surface must be reviewed. Wil-
son [24] used the correct normal stress boundary condition to describe the onset of steady
Marangoni convection and showed that, although the effect of the magnetic field is always
a stabilising one, an arbitrarily large magnetic field cannot stabilise all disturbances. Wilson
[24] also demonstrated that the presence of a magnetic field also has a stabilising effect on
the onset of overstable Marangoni convection.

The purpose of the present work is to investigate the effect of a magnetic field on the onset
of steady B6nard-Marangoni convection in a planar layer heated from below, and to do this
we extend the approach taken by Wilson [24] to include buoyancy effects. In the case of a
non-deformable free surface we give numerically calculated values of the critical parameters
which extend and correct those of Nield [15] and Maekawa & Tanasawa [16, 17] and give the
correct description of the behaviour in the limiting case of a strong magnetic field. In the case
of a deformable free surface we recalculate the results of Davis & Homsy [11] in the limit
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of strong surface tension for the non-magnetic problem and give the corresponding results in
the presence of a magnetic field. Finally, we give illustrative numerically calculated values of
the critical parameters for a particular choice of parameter values.

2. Problem formulation

The basic geometry we wish to examine is that of an unbounded horizontal layer of quiescent
fluid of thickness d subject to a uniform vertical magnetic field of strength H and a uniform
vertical temperature gradient. The layer of fluid is bounded below by a horizontal planar solid
boundary at constant temperature T, and above by a free surface at constant temperature T2
which is in contact with a passive gas at constant pressure P and constant temperature T.
The fluid is assumed to have constant, non-zero electrical resistivity. We choose rectangular
axes with the x - and y -axes in the plane of the lower solid boundary and the z -axis vertically
upwards, so that the lower boundary is given by z = 0 and in the undisturbed state the free
surface is located at z = d. When motion occurs the free surface will be deformed and then
we denote its position by z = d + f(x,y, t). The surface tension of the free surface, r, is
assumed to be dependent on temperature T according to the simple linear law,

7 = 70 - y (T - To),

where To70 is the value of at the suitably chosen reference temperature To and the constant
y is positive for normal fluids.

Subject to the Boussinesq approximation the governing equations for an incompressible,
electrically conducting fluid in the presence of a magnetic field are

0U 1 2 P _

+(U V)U = -- Vn + V2U + P g + (H. V) H, (1)
t PO po 4 iTpo

9H
at + ( U ' V ) H = (H.V)U+?V2H, (2)

OT
aT +U.VT = KV 2 T, (3)

V-U = 0, (4)

V-H = 0, (5)

where U is the fluid velocity, H is the magnetic field, T is the temperature, g = (0,0, -g)
is the external gravity field and H is the magnetic pressure, which is defined to be =
P + IHI2/887 where P is the fluid pressure. The density of the fluid is given by

p = po {1 - a(T - To)),

where a is the coefficient of volume expansion and the constant p0 is the value of the
density at the reference temperature To. The other properties of the fluid are represented
by the kinematic viscosity v, the magnetic permeability g/, the electrical conductivity -,
the electrical resistivity 71 = 1/4rrIt& and the thermal diffusivity K. At the free surface we
have the usual kinematic condition together with conditions of continuity of the normal and
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Fig. 1. Geometry of the unperturbed state.

tangential stresses, and for the temperature Newton's law of cooling,

aT
-k 5 = h(T - T,),

On

where k is the thermal conductivity of the fluid, h is the heat transfer coefficient between
the free surface and the gas and n is the outward unit normal to the free surface. At the fixed
lower boundary the usual no-slip condition requires continuity of velocity between the solid
and the fluid, and the temperature takes the constant value T . We also require boundary
conditions for the magnetic field but, as we shall see, in the special case of the onset of steady
convection we can eliminate the magnetic field entirely from the problem and so do not need
to specify them in the present work.

If we identify the reference temperature To with T2, the temperature of the free surface
in the undisturbed state, then there is a basic state in which the fluid is at rest U = 0, the
magnetic field is uniform, H = (0,0, H), the free surface is flat, f(x,y,t) = 0, there is a
uniform temperature gradient across the layer, T = T - (T - T2)z/d, where T - T2 =
(T2 - T,)hd/k and the pressure is given by

P =Po-pog(z-d) ( - d) (z

The geometry of the basic state is shown in Fig. 1 and in what follows we shall investigate
the linear stability of perturbations to this basic state.

3. Non-dimensionalisation

To simplify the analysis we introduce non-dimensional variables. Taking d as the unit of
length, appropriate scales for the velocity, magnetic field, temperature gradient and time
are K/d, H, (T 1 - T2)/d and d2 /K respectively. Non-dimensionalising the equations and
boundary conditions gives rise to eight non-dimensional groups which, in addition to the
Rayleigh number, R, and the Marangoni number, M, defined above, are the Prandtl number,
Pr = VI/K, the Magnetic Prandtl number, Pm = /K, the Chandrasekhar number, Q =

aH 2d2/47rpovw, the Crispation number, Cr = poVK/rod, the Nusselt (or Biot) number, Nu =
hd/k, and the Bond number, Bo = pogd2/To.
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4. The linearised problem

We analyse the linear stability of the basic state in the usual manner by seeking perturbed
solutions for any quantity ((x,y, z, t) in the form

(I(x, y, z, t) = (Fo(x,y, z) + (z)etei(ax + PY),

where (o is the value of ( in the basic state and the temporal exponent to will, in general,
be complex. Substituting these forms of solution into equations (1), (2) and (3) and neglect-
ing second order and higher terms in the perturbed quantities we obtain the corresponding
linearised equations, which can be combined into three equations using equations (4) and
(5). In the present work we shall treat only the onset of steady convection and so set a- = 0
in the equations and boundary conditions. In this special case we can eliminate the magnetic
field and the parameters Pr and Pm from the problem by combining the linearised versions
of equations (1) and (2) to obtain two linear equations involving only the z- dependent
part of the z- component of the perturbation to the velocity, denoted by w(z), and the
z- dependent part of the perturbation to the temperature, denoted by T(z):

[(D2 - a2)2 - QD2 ] w - a2 RT = 0, (6)

(D 2 -a 2)T+w = 0. (7)

The operator D = d/dz denotes differentiation with respect to z and the quantity a =
(a 2

+ 32)1/2 is the total wave number in the x - y plane. When a = 0 the linearised versions
of the boundary conditions at the free surface become

w = 0, (8)

Cr(D2 - 3a2 - Q)Dw -a 2 (a2 + B)f = 0, (9)

(D2 +a 2 )w+a 2 M(T-f ) = 0, (10)

DT+Nu(T-f) = 0, (11)

evaluated on z = 1, while at the solid boundary we have

w = 0, (12)

Dw = 0, (13)

T = 0, (14)

evaluated on z = 0. Notice that, even though the magnetic field has been eliminated from
the governing equations and boundary conditions, magnetic field effects are still included via
the Chandrasekhar number Q. This problem was investigated by Sarma [18, 19, 20, 21, 22,
23] who incorrectly omitted the term due to the magnetic field in the normal stress boundary
condition (9).

To solve the linearised problem for the onset of steady convection we seek solutions in the
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forms

w(z) = ACez, T(z) = CeSZ ,

where the exponent and the complex quantities A and C are to be determined. Substi-
tuting these forms into the equations (6) and (7) and eliminating A and C we obtain a sixth
order algebraic equation for , namely

(~2 - a2 ) [(2 a2)2 _ Q2] + a2 R = 0, (15)

with six distinct roots, which we denote by 1,..., 6. Denoting the values of A and C
corresponding to i for i = 1,...,6 by Ai and Ci we can use equation (7) to determine
A i to be A i = - (i

2
- a2 ) for i = 1,..., 6. We can use equation (9) to eliminate the free

surface deflection

C, (D2 - 3a2 - Q) Dw

f a2 (a2 + Bo)

evaluated on z = 1, which leaves the six boundary conditions (8), (10), (11), (12), (13) and
(14) to determine the six unknowns C1,..., C6 (up to an arbitrary multiplier). The dispersion
relation between M, R, a, Cr, Q, Bo and Nu is determined by substituting the solutions
for w(z) and T(z) into the boundary conditions and evaluating the resulting 6 x 6 complex
determinant of the coefficients of the unknowns, which can be written in the form

D1 + MD2 = 0,

where the two 6 x 6 complex determinants D1 and D2 can depend on all the parameters
of the problem except for M. After some simplification the elements of the determinant
D1 = Idijl are given by

dli = Aie i, (16)

d2i = fi2Aie4 , (17)

d3i = (i + N) e, (18)

d4i = Ai, (19)

d5i = iAi, (20)

d6i = 1 (21)

for i = 1,... ,6. The coefficients of the determinant D2 are the same as those of D1 apart
from the terms

d2i = a2 1 - Cr (2 3a2-_ Q) ]Ai e, (22)
2i ~ [ c,~ a2(a2 + B) ] ' (22)

d3i = 6jief (23)

for i = 1,...,6. Notice that D1 is independent of C and Bo and that D2 is independent
of N,. One immediate consequence of this is that the onset of steady Bdnard convection
(M = 0 ) is independent of C and Bo, and so the results obtained by Chandrasekhar [14] in
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the case C = 0 also apply to the more general problem with Cr 0 when the free surface
is deformable.

The method of solution described above gives, in principal, the complete solution for the
linear stability problem. In practice, however, we have to turn to numerical computation in
order to evaluate the complex determinants D and D2 and to determine the marginal
stability curves. In order to the prevent numerical difficulties arising from the exponential
terms the i th columns of D1 and D2 were both multiplied by an exponential factor with
exponent min (0, -Re(i)), where Re(.) denotes the real part of a complex quantity, and
then evaluated using NAG routine F03ADE

5. Results

On the marginal stability curves in the (a, M) plane M = M(a, R, Cr, Q, Bo, N) and the
region above the marginal stability curve represents unstable modes and the region below the
curve represents stable modes, and so for a given set of parameters the critical Marangoni
number for the onset of steady convection is defined to be the global minimum of the corre-
sponding marginal stability curve. We denote this critical value by Mc = MC(R, Cr, Q, Bo, N.)
and the corresponding critical wave number by ac = ac(R, Cr, Q, Bo, N,), and so for M < Mc
all disturbances are stable and for M > Mc unstable disturbances exist. In Appendix A we
show that on the marginal stability curves M - 8a2 as a - o regardless of the values of
the other parameters. If Cr = 0 then M = 0(1/a2 ) for a < 1 and the curves always have
their global minimum at a non-zero value of a. In the simplest case Q = 0, R = 0 we
recover Pearson's [4] critical value of Mc = 79.607 at ac = 1.99 when Nu = 0 and find that
MC/N, - 32.073 at a = 3.01 in the limit N- oo . If Cr 0 but Bo = 0 then

M -g(Q12)(1 + Nu) (24)

for a << 1 and so Mc = 0 at ac = 0, while if Cr 0 and Bo o 0 then

M Bo g(Q/2)(l+ N) (25)

for a < 1 and Mc can occur either at a non-zero value of ac or at ac = 0 depending where
the global minimum occurs. In the above we have defined the function

sinh H - H cosh H
g(H) = H(1 - cosh H) (26)

which is plotted in Fig. 2. Notice that g(H) 2/3 as H --+ 0 and so we recover the
corresponding results for the problem without a magnetic field given by Takashima [7] while
g(H) 1 as H oc. Since the parameter R only occurs in the problem multiplied by the
factor a2 these leading order expressions for M when a < 1 are exactly the same as those
obtained by Wilson [24] in the case R = 0.

On the marginal stability curves in the (a, R) plane R = R(a, M, Cr, Q, Bo, Nu) and again
the region above the marginal stability curve represents unstable modes and the region below
the curve represents stable modes, and so for a given set of parameters the critical Rayleigh
number for the onset of steady convection is defined to be the global minimum of the corre-
sponding marginal stability curve. We denote this critical value by Rc = Rc(M, Cr, Q, Bo, N,)
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Fig. 2. The function g(.) given by equation (28).

and the corresponding critical wave number by a = a,(M, C,, Q, Bo, Nu), and so for R < Rc
all disturbances are stable and for R > Rc unstable disturbances exist. The behaviour of
these curves is rather harder to determine, but in the case of pure buoyancy-driven convec-
tion M = 0 then R = 0(1/a2 ) for a << 1 and R = O(a4 ) as a - oo and there is a single
global minimum value of R at a non-zero value of a. When in addition Q = 0 we recover
the well-known values of Rc = 669.00 at a = 2.086 when N = 0 and Rc = 1100.65 at
ac = 2.682 in the limit Nu -- oc.

Of course, what we really need for the combined problem is the marginal stability surface
in three-dimensional (a, M, R) space separating the region of unstable modes from the region
of stable modes. However, because of the particularly simple way in which the parameter M
occurs in the problem it is usually convenient to work with M as the critical parameter for
a range of values of R.

5.1. Non-deformable free surface Cr 0= 

In practice the value of C, may be very small ( for a 1 cm layer of water open to air at 200 C
we have C, 10- 7 ) and so perhaps the most obvious simplification to make is to consider
the limit of large surface tension, Cr = 0, in which the free surface is non-deformable.

Table 1 gives the numerically calculated values of R and Mc with the corresponding
values of ac for purely buoyancy-driven and purely thermocapillary-driven convection re-
spectively in the case Nu = 0 and the limit Nu - o when C, = 0. It extends and corrects
the similar results given by Nield [15] and Maekawa & Tanasawa [16,17] by giving more
accurate values over a larger range of values of Q.

The conditions for the onset of steady convection in this case were fairly completely de-
scribed by Nield [15] and are illustrated in Fig. 3 and Fig. 4, which show M and a in
the case N = 0 together with M*I/N, and a, in the limit N oo plotted as functions
of R*, where R* is defined to be the value of R divided by the corresponding value of
Rc for pure buoyancy-driven convection and M* is defined to be the value of M divided
by the corresponding value of Mc for pure thermocapillary-driven convection. As Nield [15]
demonstrated when M > 0, R > 0 and Q = 0 the two destabilising mechanisms are tightly
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Table 1. Numerically calculated values of Rc and Mc and the corresponding values of a for pure buoyancy-driven
and pure thermocapillary-driven convection respectively when Cr = 0 in the case N = 0 and the limit Nu oo
for a range of values of Q. In the latter case the limiting value of MC/Nu rather than Mc is given.

Nu= 0

Q Rc ac Mc ac

104 669.0004 2.0856 79.60696 1.9929
10- 3 669.0197 2.0856 79.60928 1.9929
10-2 669.2130 2.0859 79.63249 1.9931
10-1 671.1453 2.0880 79.86452 1.9951

1 690.3729 2.1091 82.17241 2.0147
10 874.8618 2.2884 104.2227 2.1810

102 2424.903 3.1281 284.2223 2.9589
103 14594.63 4.9910 1632.472 4.7448
104 118360.3 7.9486 12830.16 8.0924
105 1074679. 12.2337 114212.7 14.1872
106 1.0270543 x 107 18.4202 1075322. 25.1160
107 1.0054710 x 108 27.4234 1.0410180 x 107 44.6003
10, 9.9554189 x 108 40.5868 - -

N - oo

Q Rc ac Mc/Nu ac

10- 4 1100.652 2.6823 32.07307 3.0141
10 3 1100.677 2.6824 32.07366 3.0141
10-2 1100.920 2.6826 32.07961 3.0145
10-1 1103.351 2.6851 32.13898 3.0183

1 1127.498 2.7099 32.06755 3.0553
10 1355.487 2.9186 38.06755 3.3804
102 3149.559 3.8500 71.98895 5.1982
103 16117.90 5.7486 210.6965 12.4993
104 122138.3 8.6358 666.0381 39.3076
105 1085076. 12.8481 2106.198 124.3014
106 1.0301066 x 107 18.9886 6660.381 393.0757
107 1.0063990 x 108 27.9651 21061.97 1243.015
10, 9.9582931 x 108 41.1129 66603.81 3930.757

coupled and reinforce each other. As Q is increased from zero this coupling is progressively
weakened, but the effect of the magnetic field is to cause a monotonic increase in Mc and
Rc viewed as functions of Q, and hence is always a stabilising influence on the system. As
Q becomes large the marginal stability curves may develop more than one local minimum
which results in the discontinuity in the graph of ac as a function of R shown in Fig. 4(b)
produced as the absolute values at two different local minima vary and the position of the
global minimum jumps discontinuously from one to the other.

The limit Q oo
The numerical calculations indicate that in the limit Q - oo the values of Rc and Mc each
approach the same limits as they do in the absence of the other destabilising mechanism.

In Appendix B we show that for pure Benard convection the limiting values of Rc and
ac as Q -* oo are

Rc = 2 Q + 3 (27)
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a (4 )1/6

2 Q1/6 + o (Q1/6) (28)

Figure 5 shows the numerically calculated values of Rc/Q, (Rc - 72 Q)/Q2 /3 and ac/Q 1/6

plotted as functions of Q for different values of Nu and verifies that Rc/Q .72 

9.869604401, (R -7 J 2 Q)/Q 2/ 3 --+ 3 ('4/2)2 13 40.00991095 and ac/Q 1 6 ( 4 /2) 1/6

1.91100394 as Q - o as predicted.
In Appendix C we extend the method of Wilson [24] to show that for pure Marangoni

convection the limiting values of Mc and a as Q -* oo are

R*
1 , '
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i _

n rt
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Mc = Q + fi()Q 3/4 +o (Q3/4)

and

ac = Q1/4 + o (Q1/4) 

where we have defined the function

fi(a) = ( 2 + N.
(1 - e22) i 

(29)

(30)

(31)

and the coefficient is determined by the equation dfl/dd = 0. This equation can easily
be solved numerically and the values of and f(ai) are given in Table 2 for a range of
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values of N,. Fig. 6 shows the numerically computed values of Mc/Q, (Mc - Q)/Q3/4 and
ac/Q 1/4 plotted as functions of Q for different values of Nu and verifies the values of the
asymptotic limits given in Table 2. In the special case N - oc Wilson [24] showed that the
limiting values of Mc/Nu and a as Q --+ o are

M = 2()Q/2 + (Q1 /)

and

a, = aQ1/2 + o(Q112)
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where we have defined the function

f2(a)= 1 
(1 + 42)1/2 

(34)

and the coefficient is determined by the equation df2/da^ = 0. This equation can easily
be solved numerically to yield the solution aii 0.39307569 with the corresponding value

f2(ai) 6.66038135.

Table 2. Numerically calculated values of and the corresponding values of fi (d) obtained by solving the equation
dfi /di = 0 for a range of values of Nu.

N. a fi (a)

0 0.79260053 2.2160358672
1 1.02652433 3.3112632065
2 1.19905121 4.2094005590
3 1.34843714 4.9946370376
4 1.48768362 5.7001191814
5 1.62212906 6.3435255358

10 2.23702573 8.9444741278
15 2.73862493 10.9544528255
20 3.16227779 12.6491106537
25 3.53553391 14.1421356238
50 5.00000000 20.0000000000
100 7.07106781 28.2842712475

. A A
1

a.
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5.2. Deformable Free Surface Cr ~ 0

While in practice the value of Cr may indeed be very small it will inevitably be non-zero
and, as we have already seen, if the free surface is allowed to deform ( Cr ~ 0) then the
marginal stability curves differ fundamentally from those in the case Cr = 0 in the region
a << 1 and depend critically on whether Bo is zero or not. However, before we consider this
singular behaviour we shall investigate the regular behaviour in the limit Cr -+ 0 away from
a=0.
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Fig. 6 (c).

The limit Cr 0
Following Davis & Homsy [11], who investigated the problem without a magnetic field, we
analyse the effect of small, non-zero values of Cr by seeking solutions for Rc, M and ac
as regular asymptotic series in powers of Cr << 1 in the forms

Rc = Ro+RiCr+O(C2),

Mc = Mo + MCr + O(Cr2),

ac = ao+alCr+O(C2).

Clearly this expansion scheme will fail in the region a < 1 where the problem is singular
but is valid away from a = 0 where it is regular. The leading order terms R0 , Mo and ao
are just the solutions of the problem when Cr = 0 discussed in section 5.1, while the values
of the first order terms were obtained numerically by computing Rc, M and a for a range
of values of C, < 1 and then evaluating

Rc - Ro M -M-Mo a - ao
R1 = lim M 1= lim a = lim 

Cr- Cr ' Cr c,-0 Cr Cr-o Cr

The leading order terms are independent of Bo and, as Davis & Homsy [11] observed, the
values of R1 and M1 when Bo 0 can be calculated by multiplying their values when
Bo = 0 by the factor a2/(ao + Bo). Since pure buoyancy-driven convection is independent of
Cr the values of R1 and a at M = 0 and M1 and a at R = Rc are all zero.

Table 3 contains the numerically calculated values of ao, a, R and R1 in the case
Q = , Bo = 0 and Nu = 0 and compares them with the corresponding values obtained
by Davis & Homsy [11], who used a different method and computed the solutions to the
leading and first order problems separately. (Davis & Homsy [11] did not calculate a .) The
quantities R1 and a are plotted as functions of M in Fig. 7(a) and Fig. 7(b) respectively,
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Table 3. Numerically calculated values of ao, al, R and R1 in the case Q = 0, B = O, N = 0. The quantities
a,, R and R denote the corresponding values of a, R and R1 calculated by Davis & Homsy [11]. Presumably
the value of RI at M = 30 should be 430 rather than 420.

M aao a al Ro R 

0 2.0856 2.10 0 668.9982 669 0 0
5 2.0733 2.10 6.5 630.2187 630 2413 2254

10 2.0619 2.08 11.9 590.9898 591 4543 4269
15 2.0515 2.08 16.2 551.3167 551 6358 5917
20 2.0419 2.06 19.2 511.2042 511 7828 7326
25 2.0332 2.06 21.0 470.6562 471 8925 8242
30 2.0254 2.04 21.5 429.6762 420 9619 8914
35 2.0185 2.04 20.8 388.2672 388 9886 9023
40 2.0123 2.04 18.7 346.4314 346 9700 8709
45 2.0071 2.02 15.4 304.1702 304 9039 8092
50 2.0026 2.02 10.8 261.4847 261 7882 6856
55 1.9990 2.02 4.9 218.3751 218 6210 5203
60 1.9962 2.02 -2.4 174.8410 175 4006 3173
65 1.9941 2.02 -11.0 130.8811 131 1256 940
70 1.9929 2.02 -21.0 86.4937 86.5 -2053 -915
75 1.9925 2.02 -32.3 41.6760 41.7 -5931 -904

and the former also shows Davis & Homsy's [11] values of R1 . Fig. 7(c) and Fig. 7(d)
show M1 and al plotted as functions of R. There is evidently broad qualitative agreement
but quantitative disagreement between the two sets of data for R 1. However, both results
clearly show that flows dominated by buoyancy effects are stabilised by allowing the surface
to deform while flows dominated by thermocapillary effects are destabilised. Figures 7(b)
and 7(d) both show that allowing the surface to deform means that in flows dominated by
buoyancy the critical wave number increases, while in flows dominated by thermocapillary it
decreases. These findings agree with the work of Scriven & Sterling [5] and Smith [6] who
found that allowing the free surface to deform slightly caused an increase in the critical
wave number and a stabilisation of purely buoyancy-driven flows and the work of Takashima
[7] and Wilson [24] who found that it caused a decrease in the critical wave number and a
destabilisation of purely thermocapillary-driven flows. In the case Q = 0, B, = O, N,, = 0
the value of M at which R1 = 0 is M z 67 while the value of R at which M 1 = 0 is
R 113. The values of M and R at which al = 0 are M m 58 and R 191. Notice
that the value of R for which M1 = 0 is not necessarily the same as that for which al = 0
and similarly the value of M for which R1 = 0 is not necessarily the same as that for which
al = 0 and so we must use phrases like "dominated by buoyancy" with care in this context.
Figures 8(a), 8(b) show M1 /N, and al plotted as functions of R in the limiting case Q = 0,
B, = 0 and N,, oc and demonstrate the same general trends as in the case NU = 0. In
this case the value of R at which M1 = 0 is R m 59 and al = 0 at R ~ 112.

We can perform similar calculations when Q 0 and Figs 9(a), 9(b) show M 1 and al
plotted as functions of R* for a range of values of Q in the case B = 0 and N, = 0
and demonstrate the same general trends as when Q = 0. Evidently, the effect of increasing
Q is to exaggerate the effect of non-zero Cr. Typical values of R* at which Ml = 0 and
al = 0 are shown in Table 4 and exhibit no obvious uniform trends as Q increases from
zero.

I Velarde & Castillo [25] have detected a similar error in another of Davis & Homsy's [11] numerical calculations.



Bgnard-Marangoni Convection 177

(a)

20 40 60

M

80

(b)

I I I I
0 20 40 60 80

M

Fig. 7. Numerically calculated values of (a) R1 and (b) the corresponding value of al plotted as functions of M together with (c)
M1 and (d) the corresponding value of a plotted as functions of R in the case Q = 0, Bo = 0 and Nu = 0. In (a) the dots () indicate
the corresponding results obtained by Davis & Homsy [11] which are also listed in Table 3.

Table 4. Numerically calculated values of R* at which Ml = 0 and a = 0 respectively for a range of values of
Q in the case B = 0 and N = 0.

Q R*(M = ) = 0)

0 0.169 0.285
1 0.167 0.281

10 0.154 0.258
102 0.132 0.220
103 0.134 0.212
104 0.149 0.221

1 X 104

5 x 103

0

R1

-5 x 103

-1 X 104

- 1.5 x 10
4

0

25

al

-25

-50



(c)

R

(d)

R

Fig. 7. (c), (d).

5.2.1. Evaluation of Me

(a) Bo = 0O
If Cr y$ 0 and Bo = 0 then M = O(a2 ) when a < 1 and the marginal stability curves

attain their minimum value of zero at a = 0 so that Mc = 0 and ac = 0 for all values of

Q. Hence for all values of M > 0 disturbances with sufficiently small wave number will be

unstable regardless of the value of R.
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R

(b)

0 300 600 900 1200

R

Fig. 8. Numerically calculated values of (a) limN,o, Mi /N and (b) the corresponding value of a1 plotted as functions of R in the
case Q = 0, Bo = 0 and N, - oo.

(b) Bo 0

If Cr 0 and Bo $ 0 then M = (BI/C)g(Qll2 )(1+Nu) at a = 0 and the marginal stability
curves may have a local minimum at a = 0. The marginal stability curves can also have a local
minimum at a non-zero value of a and so, depending on the absolute values of these local
minima, Mc may occur either at a = 0 or a non-zero value of a. Typically Mc and ac 0
increase monotonically as Q is increased from zero until eventually Mc equals the value of
M at a = 0, which then becomes the global minimum. The critical wave number ac jumps
discontinuously from a non-zero value to zero and thereafter Mc = (Bo/Cr)g(Q1/2 )(1 + N,)

at a = 0. Since g(Q1/ 2) 1 as Q oc, ultimately M - (Bo/IC)(1 + Nu) as Q -- o at

al
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(a)

0.0 0.25 0.5 0.75 1.0
R*

al

0.0 0.25 0.5 0.75 1.0

R*

Fig. 9. Numerically calculated values of (a) M1 and (b) the corresponding value of a1 plotted as functions of R* in the case Bo = 0

and N, = 0 for Q = 1, 10 and 102.

ac = 0. The effect of increasing Q is always to stabilise the flow but for Marangoni numbers

M > - (1 + Nu)
Cr

disturbances with sufficiently small wave number will always be unstable no matter how large

Q becomes regardless of the value of R. This argument is exactly the same as that given by

Wilson [241 in the case R = 0.
Figure 10 shows Mc and ac plotted as functions of R in the case Q = 0, Bo = 1 and

N, = 0 for a range of values of Cr and shows the dramatic effect of the jump in the position

of the global minimum of the marginal stability curve as Cr is increased from zero. Figure 11

ml
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0 175

(b)

K C, = 0.005

350 525 700

R
Fig. 10. Numerically calculated values of (a) Mc and (b) ac in the case Q = 0, Bo = 1, NU = 0 plotted as functions of R for a range
of values of C,. Notice that the value of ac jumps discontinuously to zero as R is increased and is identically zero when C, = 0.012.

shows typical values of Mc and ac plotted as functions of Q in the case R = 300, Bo = 1
and Nu = 0 for different values of Cr and clearly demonstrates the limiting behaviour of
Mc as Q - o. Figure 12 shows typical values of Mc and ac plotted as functions of Cr
in the case R = 300, B = 1 and Nu = 0 for different values of Q. Notice how in the
case Q = 1 both Mc and ac are increasing functions of C because the flow is dominated
by buoyancy effects, while in the cases Q = 102 and 104 both Mc and ac are decreasing
functions of Cr because the flow is dominated by thermocapillary effects. Wilson [24] gives
the corresponding results when R = 0.
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Fig. 11. Numerically calculated values of (a) MC and (b) a, in the case R = 300, B, = 1, NU = 0 plotted as functions of Q for a range
of values of C,. Notice that the value of a, jumps discontinuously to zero as Q is increased and is identically zero when C, = 10-1.
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Fig. 12. Numerically calculated values of (a) M, and (b) a, in the case R = 300, B = 1, N, = 0 plotted as functions of C, for a
range of values of Q.
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Fig. 13. Numerically calculated values of (a) R and (b) a, in the case M = 25, Bo = 1, N. = 0 plotted as functions of Q
for a range of values of C,.
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Fig. 14. Numerically calculated values of (a) Rc and (b) a in the case M = 25, Bo = 1, N, = 0 plotted as functions of C, for a
range of values of Q.

5.2.2. Evaluation of Rc

We can, of course, regard R rather than M as the critical parameter. Figure 13 shows typical
values of Rc and ac plotted as functions of Q in the case M = 25, Bo = 1 and Nu = 0 for
different values of C, and shows that they only differ significantly from those when Cr = 0
for unrealistically large values of C. Figure 13 also shows that in the limit Q -* o we
eventually recover the limiting values for pure buoyancy convection given by equations (27)
and (28). Figure 14 shows typical values of R and ac plotted as functions of Cr in the case
M = 25, B = 1 and Nu = 0 for different values of Q and clearly shows the existence of
finite limiting values for both Rc and ac in the asymptotic limit Cr - oo.
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6. Conclusions

In this paper we have used a combination of analytical and numerical techniques to analyse
the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni
convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform
vertical temperature gradient. We have shown that the parameters Cr and Bo are critically
important to the onset of steady convection and, in particular, we have clarified the behaviour
of the critical parameters R, M and a in the two different limiting cases Cr - 0 and
Q --- oo.

Appendix A

In this appendix we analyse the behaviour of the marginal stability curves for the onset of
steady convection in the (a, M) plane in the limit of large wave number a - oo.

If Q 0 then in the limit a --* oo with all the other parameters in the problem apart
from M fixed the roots of equation (15) have the asymptotic forms = +fE, ±f2 and ±f3
where

Q1/2 1 / Q) 1 / Q3/2 Q1
= a + Q 2+-a 2- +2a 2- C3 + - - 2 

Q) 1 Q3/2 Q1/2C2
E2 = a- -- I+ C2- 4) 2 c3 + _ 2 + O

2aQ (+O )

where we have defined the expressions

C2 = 2 (Q- ) C3 = 8 Q (Q )(Q+ Q

The leading order terms in the asymptotic expansions of Ai = -(i2 - a2 ) and the products
EiAi and i2Ai for i = 1,2,3 are therefore

Al = [Q/2a+c +C3 ] + ( ) ,

A2 = [-Q/2a+c 2 - C'] + (2) 

A3 = R + 

together with

= [Q1/2a2 + (c2 +Q a + (c3+ Q/ 2 )] + O (a) 

62A 2 = -[-Q1/2a2 +(c2 + Q)a-(c3+ Q8/ 2 )] +O(a)
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3A3= + -- + O

and

612A1 = - [Q2a3 + (c2 + Q) a2 + (c3 + 2c2 Q2) a] + 0(1),

22A 2 = - [-Q 12 a3 + (c2 + Q)a2 _ (c3 + 2c2Q1/2) a] + 0(1),

Ra2

6:2A 3 - + 0(1).
Q

Using these expressions we can evaluate the determinants D1 and D2 to yield D 1 = 2a6Q3 +

O(a5) and D2 = -a 4 Q3/4 + O(a3 ) and so the asymptotic expansion of M = -D 1 /D 2 as
a -- oo is

M = 8a2 + 0(a).

In the special case of no magnetic field ( Q = 0) we can follow a similar expansion procedure
and obtain the same leading order result.

Appendix B

In this appendix we analyse the marginal stability curves for steady buoyancy-driven convec-
tion in the limit of a strong magnetic field, Q -- oo, and obtain asymptotic expressions for
R, and hence R and ac, which are in excellent agreement with the numerical results.

Without loss of generality we can set Cr = 0. Motivated by the numerical results when
Q -- oc we seek a solution in which R = O(Q) and a = O(Q 1/ 6) by writing

R = R1 Q + R2Q2 3 +o (Q2/3) a = Q1/6 + o (Q/ 6 )

where the coefficients R 1, R2 and are to be determined. The roots of equation (15) are
then 5 = f1, ±s2 and 3 where the quantities E1, 2 and 3 have the asymptotic forms

=Q 1/2 + a2 Q- 1 / 6 + o (Q-1/6) 

.1/i2 = Q-1- +0Q12

63 = iR/2 1 1 R1 +a4 -R2 Q-13 + Q-13
[ 1 - 1 R2

as Q -- oo . The leading order terms in the asymptotic expansions of Ai = -(2 -_ a2) and
the products iAi and i2Ai for i = 1,2,3 are therefore

A1 = - [Q +2Q1/3] + (Q1/3)

A2 = - [R1 + (R 2 - ) Q[( - ¥3)
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A3 = t 2 Q1/3 + R- ( 2 + 4-R 2 ) Q-1/3 +o (Q - 1/3)

together with

5,A = - [Q3/2 + 2a2Q5/6] + o (QS/6)

2A2 = - [R1Q1/6 + R - 2) Q-1/6 + o (Q16)

3A3 =iR 2 + (R + a2)] + (1),

and

51A = - [Q2 + 32Q4/3] +0 (Q4/3)

622A2 = - [2RQl/ 3
+ a2R2] + o (1),

632A3 = -j2RlQ 1/ 3 + a2(4 - R2) + 0 (1).

Using these expressions we can evaluate the determinant D1 and the leading order term in
the asymptotic expansion of the equation D1 = 0 is just

sin R/ 2 = 0

with the appropriate solution R1 = rr2 and the first order term is

R2 + a 6 -
2R2 = O0

and so R2 = (rr4 + i6 )/a2 . The leading order terms in the asymptotic expansion of R are
therefore

;r4 + a6 2/3

The critical wave number a is determined by solving the equation dR/da = 0 at a = ac
which yields no information at leading order, but at first order we obtain 2a = R2 so that
a = (,r 4 /2)1/ 6 and hence

=( 4 1/6 6

Substituting the expression for ai into the equation for R we obtain

4Q 2/3 Q213 (Q213)
Rc = 2Q + 3 2 / 3 + Q2/ 3

Note that the values of R1, R2 and , and hence R and ac, are independent of Nu.
Chandrasekhar [14, Chap. IV] obtained the same values of R1, R 2 and in the special case

Cr = O, Nu = oo for a similar problem with two free boundaries for which an explicit solution
for R can easily be obtained, and then went on to justify physically why the same limiting
behaviour should also occur in geometries with one or two solid boundaries. Subsequently
Maekawa & Tanasawa [17] showed numerically, but did not prove, that the limiting values of
Rc and a were independent of N,.
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Appendix C

In this appendix we extend the method used by Wilson [24] to analyse the marginal stability
curves for steady thermocapillary-driven convection in the limit of a strong magnetic field,
Q - oo, when C = 0 and obtain asymptotic expressions for M, and hence Mc and ac,
which are in excellent agreement with the numerical results.

Motivated by the numerical results when Q -- oo we seek a solution in which a = O(Q 1/ 4
)

by writing a = aQ 1/4 + o(Q1/4 ) where the coefficient a is to be determined. The roots of
equation (15) are then = ±1, l2 and a where the quantities 1l and 2 have the
asymptotic forms 51 = Q1/2 + 2 + o(1) and 2 = a2 + o(1) as Q -+ oo. The leading order
terms in the asymptotic expansions of Ai = -(i2 - a2 ) and the products 6iAi and 6i2Ai for
i = 1,2 are therefore

A l - [ + 2Q12] + (Q1/2),

A2 2Q1/2 +0 (Q1/2)

together with

61A, = -[Q3/2 + 22Q] + (Q),

2A2 = a4Q2 +o0 (Q1/2)

and

l2A1 = - [Q2 + 3i2Q3/2] + o (Q3/2)

22A 2 = ia6 Q1/2 + O (Q1/2)

while A 3 = 0. Provided that N << Q1/4 as Q - oo we can use these expressions to evaluate
the determinants D1 and D2 to obtain

D1 = d5Q 19 /4(1 - e- 2 ) [1 + N-1/ + 0 (Q9/2)

D2 = - ^5 Q 5/4 (l1 e_22) Q1/4 + 0 (Q7/2)

and the expansion for M = -D 1 /D2 is therefore

M = Q +fi(Li)Q3/4 + o (Q34),

where we have defined the function

2a^ Nu
fi(a) (1 - e-2 a 2) +

The critical wave number a is determined by solving the equation dM/da = 0 at a =
a, which yields no information at leading order, but at first order we obtain the equation
dfi/d = 0;
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282 -[1 e-2a2 (1 + 42)] - N(1 - e-2a2 )2 = 0.

This equation can easily be solved numerically and values of a and fi(a) are given in
Table 2 for a range of values of N,. Notice that as N - oo then d (Nu/2)1 / 2 and
fi(i) - 2(2N) 1 / 2 as expected, while in the special case N = 0 we recover the results
previously obtained by Wilson [24].
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